TREN PENELITIAN KLASIFIKASI SENTIMEN PELANGGAN BERBASIS MACHINE LEARNING

Authors

  • Rohimatul Maisyaroh Teknik Informatika, Fakultas Teknik, Universitas Islam Madura, Pamekasan
  • Nur Azizah Teknik Informatika, Fakultas Teknik, Universitas Islam Madura, Pamekasan
  • Nurul Hidayat Teknik Informatika, Fakultas Teknik, Universitas Islam Madura, Pamekasan
  • Hozairi Hozairi Teknik Informatika, Fakultas Teknik, Universitas Islam Madura, Pamekasan

DOI:

https://doi.org/10.23960/jrl.v4i3.69

Abstract

Pesatnya perkembangan industri online reviews mendorong kebutuhan akan teknologi cerdas, seperti machine learning, untuk menganalisis sentimen pelanggan secara efektif. Penelitian ini bertujuan untuk mengidentifikasi tren publikasi, pola kolaborasi, fokus penelitian, dan tren sitasi terkait klasifikasi sentimen pelanggan berbasis machine learning dalam konteks online reviews pada database Scopus selama periode 2020–2025. Metode yang digunakan adalah analisis bibliometrik dengan pendekatan visualisasi dan deskriptif, meliputi lima tahap utama: penentuan kata kunci, pencarian awal, penyempurnaan hasil pencarian, kompilasi statistik, dan analisis data. Dari total 2.101 publikasi awal, diperoleh 441 dokumen relevan setelah proses penyaringan. Hasil menunjukkan peningkatan publikasi signifikan pada 2023, dengan dominasi bidang ilmu Computer Science (45,7%). India dan China tercatat sebagai negara dengan kontribusi publikasi tertinggi, sedangkan IEEE Access menjadi sumber publikasi terkemuka. Analisis co-word mengidentifikasi topik dominan seperti machine learning, electronic commerce, dan deep learning. Temuan ini memberikan gambaran menyeluruh mengenai peta riset global, serta menjadi landasan penting untuk pengembangan teknologi dan strategi bisnis berbasis machine learning dalam analisis online reviews ke depannya.

Downloads

Download data is not yet available.

References

M. A. Al Rahib, N. Saha, R. Mia, and A. Sattar, “Customer data prediction and analysis in e-commerce using machine learning,” Bull. Electr. Eng. Informatics, vol. 13, no. 4, pp. 2624–2633, 2024, doi: 10.11591/eei.v13i4.6420.

X. Zhang, F. Guo, T. Chen, L. Pan, G. Beliakov, and J. Wu, “A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research,” J. Theor. Appl. Electron. Commer. Res., vol. 18, no. 4, pp. 2188–2216, 2023, doi: 10.3390/jtaer18040110.

S. Wassan, C. Xi, N. Jhanjhi, and H. Raza, “A smart comparative analysis for secure electronic websites,” Intell. Autom. Soft Comput., vol. 30, no. 1, pp. 187–199, 2021, doi: 10.32604/iasc.2021.015859.

L. T. Khrais, “Role of artificial intelligence in shaping consumer demand in e-commerce,” Futur. Internet, vol. 12, no. 12, pp. 1–14, 2020, doi: 10.3390/fi12120226.

J. A. Cano, A. Londoño-Pineda, M. F. Castro, H. B. Paz, C. Rodas, and T. Arias, “A Bibliometric Analysis and Systematic Review on E-Marketplaces, Open Innovation, and Sustainability,” Sustain., vol. 14, no. 9, 2022, doi: 10.3390/su14095456.

R. Damayanti and Z. Adrianto, “Machine Learning for E-Commerce Fraud Detection,” J. Ris. Akunt. Dan Bisnis Airlangga, vol. 8, no. 2, pp. 1562–1577, 2023, doi: 10.20473/jraba.v8i2.48559.

Z. Mohammed and S. Kadhem, “A Study about E-Commerce Based on Customer Behaviors,” Eng. Technol. J., vol. 39, no. 7, pp. 1060–1068, 2021, doi: 10.30684/etj.v39i7.1631.

Y. A. Wijaya and D. Sudrajat, “Analisis Bibliometrik : Pemetaan Penelitian Machine Learning dalam E- commerce Berdasarkan Data dari Scopus ( 2019-2024 ),” pp. 451–461, 2024.

Z. Pu, Z. Xu, X. Wang, and M. Skare, “a Systematic Review of the Literature and Bibliometric Analysis of Governance of Family Firms,” J. Bus. Econ. Manag., vol. 23, no. 6, pp. 1398–1424, 2022, doi: 10.3846/jbem.2022.18309.

R. A. Pratiwi, M. Zuhri, and I. Oktaviani, “HOW CAN THE WORLD OVERLOOK Sapindus rarak BIOPROSPECTION? A NICHE FOR INDONESIA,” Biotropia (Bogor)., vol. 31, no. 1, pp. 10–22, 2024, doi: 10.11598/BTB.2024.31.1.1926.

Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.https://doi.org/10.1016/j.asej.2014.04.011

Chen, Y., Zhang, L., & Liu, H. (2021). Machine learning applications in online reviews: A systematic review and future directions. IEEE Access, 9, 123456–123478. https://doi.org/10.1109/ACCESS.2021.3067890

Alomari, E., Hussain, A., & Alazzam, M. (2022). Advances in deep learning for online reviews applications: Trends and challenges. Journal of Retailing and Consumer Services, 67, 102954. https://doi.org/10.1016/j.jretconser.2022.102954

Kaur, R., & Arora, P. (2023). Generative AI and its transformative role in online reviews personalization. Electronic Commerce Research and Applications, 57, 101234. https://doi.org/10.1016/j.elerap.2023.101234

Li, J., Sun, Y., & Wang, X. (2024). Explainable AI in online reviews: A bibliometric and systematic review. Information & Management, 61(1), 103678. https://doi.org/10.1016/j.im.2023.103678

Rahman, M., Sultana, T., & Kim, D. (2025). Emerging trends of integrating blockchain and AI in online reviews ecosystems. Computers in Industry, 160, 107653. https://doi.org/10.1016/j.compind.2025.107653

Rahman, M., Sultana, T., & Kim, D. (2025). Emerging trends of integrating blockchain and AI in online reviews ecosystems. Computers in Industry, 160, 107653. https://doi.org/10.1016/j.compind.2025.107653

Kumar, R., Sharma, V., & Singh, A. (2021). Growth and trends of research publications in India: A bibliometric analysis of Scopus database. Library Philosophy and Practice, Article 5113. https://digitalcommons.unl.edu/libphilprac/5113

Lee, J. Y., Park, H., & Kim, S. (2023). Mapping global research productivity in technology and engineering: A bibliometric analysis of Scopus data. Technological Forecasting and Social Change, 192, 122509. https://doi.org/10.1016/j.techfore.2023.122509

Mongeon, P., & Paul-Hus, A. (2019). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 116(1), 214–232. https://doi.org/10.1007/s11192-018-2765-5

Saeed, M., Raza, S. H., & Ali, S. (2022). A bibliometric review of research productivity in Pakistan: Insights from Scopus database. PLOS ONE, 17(6), e0269123. https://doi.org/10.1371/journal.pone.0269123

Utami, S., Pratama, M. Y., & Suhendra, S. (2021). Bibliometric analysis of Indonesian research output in Scopus: Current trends and future directions. Journal of Scientometric Research, 10(3), 412–419. https://doi.org/10.5530/jscires.10.3.63

Zhang, L., Chen, H., & Huang, Y. (2020). A bibliometric analysis of China’s research output in science and technology: 2009–2018. Scientometrics, 123(2), 621–644. https://doi.org/10.1007/s11192-020-03394-5

Downloads

Published

2025-10-12

How to Cite

Maisyaroh, R., Azizah, N., Hidayat, N., & Hozairi, H. (2025). TREN PENELITIAN KLASIFIKASI SENTIMEN PELANGGAN BERBASIS MACHINE LEARNING. Jurnal Rekayasa Lampung, 4(3). https://doi.org/10.23960/jrl.v4i3.69

Issue

Section

Articles