TREN PENELITIAN KLASIFIKASI SENTIMEN PELANGGAN BERBASIS MACHINE LEARNING
DOI:
https://doi.org/10.23960/jrl.v4i3.69Abstract
Pesatnya perkembangan industri online reviews mendorong kebutuhan akan teknologi cerdas, seperti machine learning, untuk menganalisis sentimen pelanggan secara efektif. Penelitian ini bertujuan untuk mengidentifikasi tren publikasi, pola kolaborasi, fokus penelitian, dan tren sitasi terkait klasifikasi sentimen pelanggan berbasis machine learning dalam konteks online reviews pada database Scopus selama periode 2020–2025. Metode yang digunakan adalah analisis bibliometrik dengan pendekatan visualisasi dan deskriptif, meliputi lima tahap utama: penentuan kata kunci, pencarian awal, penyempurnaan hasil pencarian, kompilasi statistik, dan analisis data. Dari total 2.101 publikasi awal, diperoleh 441 dokumen relevan setelah proses penyaringan. Hasil menunjukkan peningkatan publikasi signifikan pada 2023, dengan dominasi bidang ilmu Computer Science (45,7%). India dan China tercatat sebagai negara dengan kontribusi publikasi tertinggi, sedangkan IEEE Access menjadi sumber publikasi terkemuka. Analisis co-word mengidentifikasi topik dominan seperti machine learning, electronic commerce, dan deep learning. Temuan ini memberikan gambaran menyeluruh mengenai peta riset global, serta menjadi landasan penting untuk pengembangan teknologi dan strategi bisnis berbasis machine learning dalam analisis online reviews ke depannya.
Downloads
References
M. A. Al Rahib, N. Saha, R. Mia, and A. Sattar, “Customer data prediction and analysis in e-commerce using machine learning,” Bull. Electr. Eng. Informatics, vol. 13, no. 4, pp. 2624–2633, 2024, doi: 10.11591/eei.v13i4.6420.
X. Zhang, F. Guo, T. Chen, L. Pan, G. Beliakov, and J. Wu, “A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research,” J. Theor. Appl. Electron. Commer. Res., vol. 18, no. 4, pp. 2188–2216, 2023, doi: 10.3390/jtaer18040110.
S. Wassan, C. Xi, N. Jhanjhi, and H. Raza, “A smart comparative analysis for secure electronic websites,” Intell. Autom. Soft Comput., vol. 30, no. 1, pp. 187–199, 2021, doi: 10.32604/iasc.2021.015859.
L. T. Khrais, “Role of artificial intelligence in shaping consumer demand in e-commerce,” Futur. Internet, vol. 12, no. 12, pp. 1–14, 2020, doi: 10.3390/fi12120226.
J. A. Cano, A. Londoño-Pineda, M. F. Castro, H. B. Paz, C. Rodas, and T. Arias, “A Bibliometric Analysis and Systematic Review on E-Marketplaces, Open Innovation, and Sustainability,” Sustain., vol. 14, no. 9, 2022, doi: 10.3390/su14095456.
R. Damayanti and Z. Adrianto, “Machine Learning for E-Commerce Fraud Detection,” J. Ris. Akunt. Dan Bisnis Airlangga, vol. 8, no. 2, pp. 1562–1577, 2023, doi: 10.20473/jraba.v8i2.48559.
Z. Mohammed and S. Kadhem, “A Study about E-Commerce Based on Customer Behaviors,” Eng. Technol. J., vol. 39, no. 7, pp. 1060–1068, 2021, doi: 10.30684/etj.v39i7.1631.
Y. A. Wijaya and D. Sudrajat, “Analisis Bibliometrik : Pemetaan Penelitian Machine Learning dalam E- commerce Berdasarkan Data dari Scopus ( 2019-2024 ),” pp. 451–461, 2024.
Z. Pu, Z. Xu, X. Wang, and M. Skare, “a Systematic Review of the Literature and Bibliometric Analysis of Governance of Family Firms,” J. Bus. Econ. Manag., vol. 23, no. 6, pp. 1398–1424, 2022, doi: 10.3846/jbem.2022.18309.
R. A. Pratiwi, M. Zuhri, and I. Oktaviani, “HOW CAN THE WORLD OVERLOOK Sapindus rarak BIOPROSPECTION? A NICHE FOR INDONESIA,” Biotropia (Bogor)., vol. 31, no. 1, pp. 10–22, 2024, doi: 10.11598/BTB.2024.31.1.1926.
Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.https://doi.org/10.1016/j.asej.2014.04.011
Chen, Y., Zhang, L., & Liu, H. (2021). Machine learning applications in online reviews: A systematic review and future directions. IEEE Access, 9, 123456–123478. https://doi.org/10.1109/ACCESS.2021.3067890
Alomari, E., Hussain, A., & Alazzam, M. (2022). Advances in deep learning for online reviews applications: Trends and challenges. Journal of Retailing and Consumer Services, 67, 102954. https://doi.org/10.1016/j.jretconser.2022.102954
Kaur, R., & Arora, P. (2023). Generative AI and its transformative role in online reviews personalization. Electronic Commerce Research and Applications, 57, 101234. https://doi.org/10.1016/j.elerap.2023.101234
Li, J., Sun, Y., & Wang, X. (2024). Explainable AI in online reviews: A bibliometric and systematic review. Information & Management, 61(1), 103678. https://doi.org/10.1016/j.im.2023.103678
Rahman, M., Sultana, T., & Kim, D. (2025). Emerging trends of integrating blockchain and AI in online reviews ecosystems. Computers in Industry, 160, 107653. https://doi.org/10.1016/j.compind.2025.107653
Rahman, M., Sultana, T., & Kim, D. (2025). Emerging trends of integrating blockchain and AI in online reviews ecosystems. Computers in Industry, 160, 107653. https://doi.org/10.1016/j.compind.2025.107653
Kumar, R., Sharma, V., & Singh, A. (2021). Growth and trends of research publications in India: A bibliometric analysis of Scopus database. Library Philosophy and Practice, Article 5113. https://digitalcommons.unl.edu/libphilprac/5113
Lee, J. Y., Park, H., & Kim, S. (2023). Mapping global research productivity in technology and engineering: A bibliometric analysis of Scopus data. Technological Forecasting and Social Change, 192, 122509. https://doi.org/10.1016/j.techfore.2023.122509
Mongeon, P., & Paul-Hus, A. (2019). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 116(1), 214–232. https://doi.org/10.1007/s11192-018-2765-5
Saeed, M., Raza, S. H., & Ali, S. (2022). A bibliometric review of research productivity in Pakistan: Insights from Scopus database. PLOS ONE, 17(6), e0269123. https://doi.org/10.1371/journal.pone.0269123
Utami, S., Pratama, M. Y., & Suhendra, S. (2021). Bibliometric analysis of Indonesian research output in Scopus: Current trends and future directions. Journal of Scientometric Research, 10(3), 412–419. https://doi.org/10.5530/jscires.10.3.63
Zhang, L., Chen, H., & Huang, Y. (2020). A bibliometric analysis of China’s research output in science and technology: 2009–2018. Scientometrics, 123(2), 621–644. https://doi.org/10.1007/s11192-020-03394-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Rekayasa Lampung (JRL)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).