SETTINGSANALISIS BIBLIOMETRIK TERHADAP TREN PENELITIAN SISTEM REKOMENDASI PRODUK E-COMMERCE BERBASIS COLLABORATIVE FILTERING DAN KONTRIBUSINYA BAGI INDONESIA
DOI:
https://doi.org/10.23960/jrl.v4i3.73Abstract
Collaborative Filtering merupakan metode yang umum dimanfaatkan dalam pengembangan sistem rekomendasi pada platform e-commerce. Penelitian ini bertujuan untuk mengetahui tren penulisan artikel penggunaan Collaborative Filtering dalam sistem rekomendasi e-commerce, tren artikel yang memiliki jumlah sitasi terbanyak, negara asal jurnal, dan pemetaan dalam mencari tren publikasi ilmiah internasional dengan pangkalan data Scopus. Metode yang digunakan adalah analisis bibliometrik. Penggunaan Collaborative Filtering dalam sistem rekomendasi e-commerce mengalami peningkatan selama periode 2015-2025, dengan fokus yang semakin berkembang dan mengarah pada pemanfaatan teknologi deep learning dan kecerdasan buatan (artificial intelligence). Negara-negara seperti India dan China mendominasi publikasi, sementara kontribusi Indonesia masih terbatas namun menyimpan potensi besar. Penelitian ini diharapkan dapat menjadi landasan strategis bagi peneliti dan pelaku industri di Indonesia dalam merancang sistem rekomendasi yang sesuai dan mampu bersaing, untuk memperkuat perkembangan e-commerce di tingkat nasional.
Downloads
References
X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in Artificial Intelligence, vol. 2009, Article ID 421425, 2009, doi: 10.1155/2009/421425.
S. Zhang, L. Yao, A. Sun, and Y. Tay, "Deep learning based recommender system: A survey and new perspectives," ACM Comput. Surv., vol. 52, no. 1, pp. 1–38, 2019, doi: 10.1145/3285029.
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, "Recommender systems survey," Knowl.-Based Syst., vol. 46, pp. 109–132, 2013, doi: 10.1016/j.knosys.2013.03.012.
J. Wei, L. Wang, J. Cao, and P. S. Yu, "Collaborative filtering and deep learning based recommendation system for cold start items," Expert Syst. Appl., vol. 69, pp. 29–39, 2017, doi: 10.1016/j.eswa.2016.09.002.
J. Wang, W. Liu, Y. Wang, and B. Zhang, "Billion-scale commodity embedding for e-commerce recommendation in Alibaba," in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2018, pp. 839–848, doi: 10.1145/3219819.3219850.
Q. Ai, K. Bi, Y. Lv, and W. B. Croft, "Learning heterogeneous knowledge base embeddings for explainable recommendation," Inf. Process. Manag., vol. 54, no. 6, pp. 1225–1242, 2018, doi: 10.1016/j.ipm.2018.08.001.
A. A. Chadegani et al., "A comparison between two main academic literature collections: Web of Science and Scopus databases," Asian Soc. Sci., vol. 9, no. 5, pp. 18–26, 2013, doi: 10.5539/ass.v9n5p18.
J. C. Donohue, "Understanding scientific literature: bibliometrics," J. Amer. Soc. Inf. Sci., vol. 24, no. 5, pp. 333–343, 1973, doi: 10.1002/asi.4630240503.
N. J. van Eck and L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, vol. 84, no. 2, pp. 523–538, 2010, doi: 10.1007/s11192-009-0146-3.
R. W. Putra and H. B. Santoso, "Implementation of collaborative filtering recommendation system in e-commerce applications in Indonesia," Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 1, pp. 87–93, 2018, doi: 10.11591/ijeecs.v12.i1.pp87-93.
E. S. Putra and H. B. Santoso, "Sistem Rekomendasi Produk UMKM Berbasis Collaborative Filtering untuk Meningkatkan Penjualan Online," J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 545–554, 2018.
X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Adv. Artif. Intell., vol. 2009, pp. 1–19, 2009, doi: 10.1155/2009/421425.
Y. Zhang and C. Chen, "Research and application of personalized recommendation system based on e-commerce," J. Phys. Conf. Ser., vol. 1631, no. 1, p. 012053, 2020, doi: 10.1088/1742-6596/1631/1/012053.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Rekayasa Lampung (JRL)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).